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The lateral migration of a solid spherical particle suspended in a fluid flowing 
between parallel vertical walls is investigated theoretically using a method 
developed by Cox & Brenner (1968). Buoyant and neutrally buoyant, freely 
rotating and non-rotating particles in the fluid flow are considered as is also the 
case of a sedimenting particle in a quiescent fluid. The results obtained are applied 
to the special cases of plane Poiseuille flow and of plane shear flow, these situa- 
tions being investigated in detail. 

1. Introduction 
The lateral migration of a solid spherical particle suspended in a laminar tube 

flow has been demonstrated experimentally by Segr6 & Silberberg (1961, 1962). 
These observations, because of their importance to suspension rheology, have 
spawned a number of experimental studies concerning particle migration in tube 
flow (Oliver 1962; Eichhorn & Small 1964; Theodore 1964; Jeffrey & Peamon 
1965; Denson, Christiansen & Salt 1966; Karnis, Goldsmith & Mason 1966a, b),  
in plane Poiseuille flow (Repetti & Leonard 1964,1966; Tachibana 1973) and in 
Couette flow (Halow 1968; Halow & Wills 1970a, 6 ) .  A number of theoretical 
studies (Rubinow & Keller 1961; Repetti & Leonard 1964,1966; Saffman 1965) 
have also been undertaken. An extensive survey of existing experimental data 
and a critical analysis of the various theoretical attempts so far advanced to 
explain the phenomena has been presented by Brenner (1966), who concluded 
that none of these theories is capable of furnishing a satisfactory fundamental 
explanation of lateral migration in tubes because they take no account of either 
the presence of boundaries constraining the flow or of the variation of the shear 
rate across the tube. 

Recently, the lateral migration of a spherical particle suspended in a flow 
bounded by solid boundaries has been studied theoretically in great generality by 
Cox & Brenner (1968). Using this general theory, Cox & Hsu (1975) succeeded in 
determining the migration velocity of a spherical particle, neutrally buoyant or 
not, suspended in a planar flow bounded by a single infinite plane wall. Their 
results are therefore expected to be valid for tube flow when the particle is situated 
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not too far from the tube wall. The case of a freely rotating neutrally buoyant 
sphere, suspended in a planar flow bounded by two infinite plane walls, has been 
investigated by Ho & Leal (1974). Their analysis, based on the method of re- 
flexions, is closely similar to the method of matched asymptotic expansions used 
by Cox & Brenner (1968). However, in the neighbourhood of the walls the results 
obtained by Ho & Leal (1974) do not seem to be in agreement with the asymptotic 
behaviour predicted by Cox & Hsu (1975). This discrepancy, which has not yet 
been explained, may be due to poor convergence of the numerical computation 
when the sphere is close to a wall. 

In  the present paper, the method developed by Cox & Brenner (1968) and 
Cox & Hsu (1975) is extended to the case in which the flow is in the vertical 
direction and is bounded by two vertical parallel plane walls. The migration 
velocity experienced by a spherical particle suspended in a Couette flow and in a 
plane Poiseuille flow is thus obtained. Cases of neutrally and non-neutrally 
buoyant particles are considered, the particles being either free to rotate or 
prevented from rotating by an external couple. The migration of a spherical 
particle sedimenting in a stagnant fluid bounded by two infinite plane walls is 
also considered. In  this calculation, the results for the migration velocity obtained 
by Cox & Brenner (1968) are used. However, since these results are expressed in 
terms of volume integrals involving the Green’s function for creeping flow in the 
presence of the given boundaries, one must first calculate this Green’s function, 
which is accomplished by making a double Fourier transform of the flow field. 

2. Lateral migration of a spherical particle 
Consider a viscous fluid bounded by two parallel vertical plane walls W a 

distance 1 apart, either of these walls possibly moving in the vertical direction. A 
set of rectangular Cartesian co-ordinates ( r i ,  r;, rj) is chosen such that one of the 
walls is the plane rj = 0 and the other the plane r j  = E .  The undisturbed fluid 
flow velocity U’(r’) is assumed to vary only in the rj direction normal to the 
walls so that 

Let a spherical particle of radius a be suspended in the fluid at a distance d from 
the wall rj = 0 (see figure 1). The dimensionless particle radius K is then defined 

U’(r’) = (Ui(r;), 0,O). (2.1) 

as 

and the particle Reynolds number Re as 

Re = aV/v, (2.3) 

where V is the velocity with which the particle would move upwards in the r ;  
direction as the result of gravity in an unbounded fluid at rest and v is the kine- 
matic viscosity of the fluid. 

Using perturbation methods, Cox & Brenner (1968) have succeeded in obtain- 
ing a first-order expansion in Re of the Navier-Stokes and continuity equations 
subject to the appropriate boundary conditions on the spherical particle, walls 
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FIGURE 1. Spherical particle of radius a suspended in a fluid flowing between 
vertical parallel plates. 

and infinity. They thus obtained the migration velocity of the particle towards 
or away from the walls. Their analysis assumes that the conditions 

R e e l ,  ~ $ 1  (2.4) 

are satisfied so that a double expansion may be made in terms of the two para- 
meters Re and K .  It is also required that the spherical particle should not be too 
close to either wall, i.e. i t  is assumed that 

a/d < 1, a/@-d)  < 1. (2.5) 

For expansions in terms of the Reynolds number Re, it  may be seen that, in 
general, two regions of expansion exist, one being an inner region surrounding 
the particle in which viscous effects are dominant and the other being an outer 
region in which both viscosity and inertia are important. The expansion is thus 
singular and solutions can be obtained through matched asymptotic expansion 
techniques (see, for instance, Proudman & Pearson 1957; Rubinow & Keller 
1961; Saffman 1965). However, in the present problem, Cox & Brenner (1968) 
have shown that if the inequality 

is satisfied, that is if the walls are assumed to be located inside the inner region of 
expansion, one need consider only the inner expansion in order to calculate the 
ks t  term in the expansion for the migration velocity. Furthermore, it was shown 
by Cox &, Brenner that, if the parameter K is small, this flow may be calculated by 
neglecting the size of the particle and assuming that the particle acts as a point 

Re/K < 1 (2 .6 )  
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force on the fluid. I n  this manner, values for the particle migration velocity were 
obtained in terms of integrals involving the Green's function for the solution of 
the creeping-flow equations. Throughout this calculation, the dimensionless 
variables used are based upon a characteristic velocity U, of the undisturbed 
flow field and the distance 1 between the plane walls, so that the dimensionless 
position vector r and undisturbed flow velocity U(r) are defined as 

r = r'/l, U = U'/U,. (2.7) 

The dimensional migration velocity wj of a spherical particle located at a 
distance d from the wall rj = 0 was obtained by Cox & Brenner for the following 
three cases: 

(i) A particle in a fluid which is quiescent or undergoing a very sIow motion 
with I V/U,( 

where /3 = d/l .  

1. The migration velocity for this case was found to be 

W; = ~ ~ T ( u V ~ / V )  h (p), (2.8) 

(ii) A non-neutrally buoyant spherical particle with the condition 

K 2  < I V/u,l < 1 

being satisfied. The migration velocity was found to be 

W; = - ~ ~ T ( u V / V )  V,g(/Y). (2.9) 

(iii) A neutrally buoyant (or almost neutrally buoyant) spherical particle 

(a) which is allowed to rotate, when 
with I V/U,l -g K ~ ,  

w; = ~$7r.."(aU~/V)f(/9), (2.10) 

w; = +TK2(au;/v)p(p), (2.11) 

(6) which is not allowed to  rotate, when 

where p = d/l  as before. 
The functions h(/?), g(/3), f(p) and p ( p )  appearing in (2.8)-(2.11) are defined 

explicitly by the following expressions, all integrals being over the entire fluid 
volume I' (i.e. 0 < r3 < 1): 

h(B) = J-{G3aE,/ar,tdr, (2.12) 

g(p)  = s([0,(r3) - q(r2)1 6 3  aEl/arl + 51 6 3  8u1(r3)/ari1dr> (2*13) 

f(/3) = [aq(r&/ar,l f3=r: [fi(p) +f2(/3)1, 
P ( p )  = [aq(r,)/ar31 Q =q [4f1(p) +f2(/3)1, 

(2.14) 

(2.15) 

where r* is the dimensionless position vector of the centre of the sphere, so that 
r t  = d]l = p. The Cartesian tensor q ( r ,  r*) is thsGreen's function for creeping 
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(2.18) 

with qj = 0 on W ;  S,, is the Kronecker delta and 6(r - r*) is the three-dimensional 
Dirac delta function. Thus Kj physically represents the ith component of the 
creeping-flow velocity field at  r due to a unit point force acting on the fluid at 
r* in thejth direction. 

3. Flow produced by a point force acting between two plane walls 
In order to evaluate the expressions given in $2  for the migration velocity, we 

&st calculate the Green’s function& Thus a single isolated point force is assumed 
to act at an arbitrary point within the fluid bounded by the two plane walls W .  
The strength of this point force is taken as f’ and is aseumed to act at a point 
r’* = (ri*, r;*’ rA*) relative to the (ri, r;, r i )  rectangular Cartesian co-ordinate 
system (see figure 2). 

The flow velocity u‘ and pressurep’ produced by this point force f‘ are assumed 
to satisfy the creeping-flow equations 

(3.1) pV‘2u‘ - V’p’ + f‘S(r’ - r’*) = 0, 

V’.u’ = 0, 

u’= 0 on W ,  
with the boundary condition 

where ,u is the viscosity of the fluid. 

introducing the dimensionless variables 
Letting V and 1 be the characteristic velocity and length respectively and 

r = r‘/l, u = u’/V, V = lV’, p = p’llp V ,  f = f’/pl V ,  (3.4) 
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V2u-Vp+fS(r-r*) = 0, 

v .u  = 0, 

u=O on W .  

Define I' and Tz as the two-dimensional Fourier transforms of the velocity u and 
pressure p respectively, so that 

u and p then being given by the inverse Fourier transforms 

By taking the Fourier transforms of (3.5)-(3.7), it is seen that r and  II satisfy the 
relations 

qkl rl + k, r,) + ar,/ar, = 0, 

subject to the boundary conditions 

(3.11) 

I?, = r2 = I?, = 0 at r, = 0, (3.12 a) 

I?, = r2 = I?, = 0 at r, = 1. (3.12 b )  

Multiplying the first component of (3.10) by ik,, the second component by 
ik2, adding the resulting equations and using the equation of continuity (3.11), 
one obtains the value of II as 

(3.13) 

where q2 = k;+k;,  n = i(klfl+ k2f2)/q and a = i(klr,*+k2rX).  

Differentiating (3.13) with respect to r,, substituting the resulting expression into 
the third component of (3.10) and integrating the resulting differential equation 
yields the value of r3 as 

I', = ( A  + Br,) exp [ - qr,] + (C + Dr3) exp [p,] 
+&r-2{(f3(q-1 + Ir3- rg I )  - n(rj  - rg)}  exp [ - qlr, - rgl -a] ,  (3.14) 
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where A ,  B, C and D are constants of integration which have to be evaluated from 
the boundary conditions. Differentiating (3.14) with respect to r3 once and thrice 
and substituting the resulting expressions into (3.13),  one obtains the value of 1T 
as 

1T = 2B exp [ - qr3] + 2 0  exp [qr3] 

+ &r2{fsl r3 - rz I / ( r3  - rz) - n} exp [ - q )  r3 - rz 1 - a].  (3.15) 

By substituting this value of 1T into the first and second components of (3.10) 
and integrating the resulting differential equations, one obtains the values of r, 
and I?, as 

rl = (G - ik, q-lBr3) exp [ - qr3] + (H + ik, q-lBrJ exp [qr3] + +37r-2{2fi q-1 

+ ik, nq-,( 1 + q(r3 - @I) - iklq-v3(r3 - r z ) }  exp [ - qlr, - r,* I - a] ,  
(3.16) 

r2 = ( E  - ik, q-lBr3) exp [ - qr3] + ( F  + ik, q-lDr3) exp [qr3] + &7r-2(2f2 q-1 

+ ik, nq-2 (1 + q)r3 - r,*l) - ik, q-lf3(r3 - r:)} exp [ - qlr3 - ~ $ 1  -a] ,  
(3.17) 

By substituting (3.14),  (3.16) and (3.17) into the boundary conditions (3.12a),  
where E ,  F ,  G and H are constants of integration. 

one obtains the following expressions: 

A + C = - &r2{ f q-l( 1 + q.2) + nrz} exp [ - qrz - a], (3.18) 

E + F  = -&gr2{2f2q-l+ik n q - + q$) + ik, q-'f3r3*} exp [ - qrg - a]. 
(3.20) 

Similarly from boundary conditions (3.12b),  it  is seen that 

( A  + B) exp [ - ql + (C +D) exp [q] = - &7-2{f3 q-l(i + q( 1 - $1) - n(i - ~ 2 ) )  

( E  - ik, q-lB) exp [ - 41 + ( F  + ik,q-lD) exp [q] 
x exp [ - q( 1 - T:) - a], (3.21) 

= - &7r-2[2,f2q-1 + i k ,  nq-,{l + q( 1 - r z ) )  - ik2q-lf3( 1 - rz )]  exp [ - q( 1 - r*) - a], 
(3.22) 

(G - ik, q-lB) exp [ - 41 + (H + ik, q-1 D )  exp [q] = - J-7r-2 16 

x [2f1 q-l+ ik, nq-,{ 1 + q( 1 - r z ) )  - ik, q-'f3 (1 - a)] exp [ - q( 1 - r:) - a]. 
(3.23) 

Furthermore by substituting the values of r3, P, and I?, as given by (3 .14) ,  
(3.17) and (3.16) into the continuity equation (3.11), one obtains the following 
additional relations between the constants A ,  . . . , H : 

ik ,G+ik ,E+B = Aq (r3-r3*) > 0, (3.24) 

i k , H + i k , P + D  = -Cq (r3-r3*) < 0.  (3.25) 

Equations (3.18)-(3.25) constitute 8 equations in the 8 unknowns A ,  ..., H 
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4 4 

i=l i-1 
A = S-l 2 m,a,, B = S-l mi b,, (3.26), (3.27) 

C = - &-Zm, -A,  D = S-1 2 midi, (3.28), (3.29) 

E = - (nl eq- n,)/a4, F = (nl e+ - n,)/a4, (3.30), (3.31) 

G = - (n, eq- n,)/a4, H = (n, e+- n4)/a4, (3.32), (3.33) 

4 

i= 1 

where a, = ew-2q2+2q-1, a2 = -2q, a, = - ( l+q)eq+(l-q)e- ,  

a, = -eq+e-@, (3.34) 

b, = eq-e-9-2qeq, (3.35) 

d4 = -eq+e*+2qe*, (3.36) 

b, = q(e2q+2q-1), b, = 1+2q-eQ, b, = -q(eq-e*+2qe@), 

d, = q(1+2q-e-W), d2 = 1-2q-e-w, d,  = -q(eq-e++2qe*), 

ml = [nr: +f3(q-l + r;)] exp [ - qr? -a], 

m3 = [n(r; - I )  +f3 (q-l+ 1 - rg)] exp [ - q( 1 - r;) - a], 

(3.37a) 

m, = [ n ( l - ~ ~ ; ) - f , ~ s * ~ l e x P [ - Q ~ ~ - ~ l ,  (3.373) 

(3.37c) 

(3 .374  

(3.38 a )  

(3.38 b)  

( 3 . 3 8 ~ )  

(3.38d) 

The Fourier representation ( rl, r2, I?,) of the flow field (~1, u,, u,) produced by 
a point force (f., fa, f,) acting at  an arbitrary point (rf, r,*, r;) within a stagnant 
fluid bounded by two rigid solid plane walls is thus given by (3.16), (3.17) and 
(3.14) with the coefficients A, ..., H given by (3.26)-(3.39). The explicit forms 
for the expressions rl, I", and I?, obtained by substituting the coefficients 
A, . . . , H have not been written here because the resulting expressions are too 
lengthy. However, these expressions will be used in the analysis which follows. 

m, = [n(l- q(1- r,*)}+f,q( 1-7-,*)3 exp [ - q( 1 -r:) -aJ, 

nl = - &7r2[2f2 + ik2{nq-l( 1 + qrz) +I3 r:}] q-' exp [ - qrg - a], 
n2 = ik2 (B e-9 - D ea)/q - &7r2[2f2 + ik,(n(q-l + 1 - rg) 

n, = - &7r-2[2fl + ik, (.(ad1 + rg) +fa r;)] q-l exp [ - qrs* - a], 
n, = ikl(B e-9 - D S ) / q  - &r2(2f1 + ik,[n(q-l+ 1 - r$) 

-f3(l -r$))] q-l exp [ - q( 1 - 7-;) -a], 

-f3( l -  r,*)]} q-lexp [ - q( 1 - r;) -a], 
S = -16~2(e2 ' J+e-~-4q2-2 ) .  (3.39) 

4. The Green's function 
In this section, the Green's function for creeping flow bounded by two rigid 

parallel plane walls W is considered. The flow field u(r) considered in the previous 
section, satisfying the creeping-flow equations with a point force f at r = r* and 
the no-slip condition on walls W, must depend linearly on f,  so that 

u,(r) = gjO-9 r*)fi, (4.1) 
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where, by definition, Ej(r, r*) is the required Green's function. 
Defining Fij as the Fourier transform of this tensor Green's function Gj, i.e. 

- r,=-lm 1 Iw - qj exp [ - i (k ,  rl + k, r,)] dr, dr,, 4n2 --g) - w  

and by taking the Fourier transform of (4.1)' it is seen that 

ri = Ftjfj, (4.3) 
where I?, is the Fourier transform of u,. Defining a quantity I?,, by the relation 

(4.4) 
we can rewrite (4.3) as 

(4.5) 
Substituting the value of I?, obtained at the end of $3 into (4.6) gives the values 

- 
rij = rzj exp [ - i (k ,  r: + k, r;)], 

r, = exp [ - i(k, r: + k, 931 I?,,&. 

of r,, and r13 by taking successivelyf = (1, 0,O) andf = (0, 0,l). Thus 

+ &r2[2 - k: q-,( 1 + ql r, - rg I ) ]  q-l exp [ - ql r, - rz I], 

- &r2ik1 p1(r3 - rg ) exp [ - ql r, - rgl]. 

rll = (C, - ik, q-lB, r,] exp [ - qr,] + [H,  + ik, q-W, r,] exp [qr3] 

r13 = [G, - ik, q-lB3 r,] exp [ - q5-,I + [H3 + ik, q-lD3 r3] exp [p,l 
(4.6) 

(4.7) 
Similarly the values of r2,, r23, r31 and ras may be obtained as 

r2, = [El - ik, q-lB1 r3] exp [ - qr3] + [F' + ik, q-lD, r,] exp [qr3] 

rzs = [E, - ik, q-lB, r,] exp [ - qr,] + [F, + ik, q-lD, r31 exp [qrJ 

- &n-'k1 k2 q-,( 1 + qlr, - ) exp [ - q ]  r3 - rg I], 

-&r2ik2 q-l (r, - rg) exp [ - qlr, - r$ I], 

- & ~ - ~ i k ,  q 3 r 3  - b) exp [ - q1 r3 - rz  I], 

+ &r2(q-l + Ir, - rz I )  exp [ - qlr, - r$ I], 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

where, using the definitions (3.34)-(3.36) and (3.39) and letting j = 1 or 3, we 
have 

r3i = [A, Bi rsI exP - PraI + [ci + Bi r3I exP [ P a l  

rs  = [A3 + B3 rsI eXP - PSI + [C3 + 0 3  raI eXP 

4 4 

%=1 (-1 
A, = 8-1 x mi, a,, Bj = 8-1 x mij b,, 

4 

2-1 
C = -2-n-2.m 16 cj-A,, Dj = 8-1 m&, (4.12) 

E, = - (n1geq-n2j)/a4, E; = (%,e*-n2j)/a4, Gj = - (n3jeq-nw)/a4, 

3 

Hj = (n3 j  e* - n,j)/a4, (4.13) 

(4.14~) 

rn3, = - iklq-l(l - 9-3) exp [ -q ( l  -r,*)], m41 = ik, (q-1- 1 +rg) exp [ - q(1 - r z ) ] ,  
(4.14b) 

(4.14~) 

rnll = ik,q-l r$ exp [ - qrz],  m,, = ik, (q-l-  r,*) exp [ - qrg], 

mi3 = (q-l+ r:) exp [ - qrz], mZ3 = - r; q exp [ - qr$], 
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m33 = ( q - ' + l - r z ) e x p [ - q ( l - r , * ) ] ,  

P .  Vasseur and R.  G. Cox 

m43 = (l-r,*)qexp[-q(l-r,*)], 
(4 .14d)  

nll = & r 2 k 1  k, s-~ (  1 + qr;) exp [ - qr,*], ( 4 . 1 5 ~ )  

n2, = ik2 q-'[B, e-q- D, eq] + & r 2 k ,  k, q-3{ 1 + q( 1 - r:)}exp [ - q( 1 -$)I, 
(4.15b) 

~ 1 3  = - &r2 ik2 q-'r,* exp [ - qrz], (4.1 5 c )  

n23 = ik2 q-'[BS e-9 - D3 eq + &gr2ik, q-l( 1 - r,*) exp [ - q( 1 -$)I, 
(4.15d) 

n3,= --L , en- 2 [2  - k; q-,( 1 + qr;)] q-lexp [ - qrg], (4.15e) 

n4, = ik,q-1[Ble~-Dleq]-&7r-2[2-k214-2{1 + q ( l  -rz)}]q-lexp [-q(1 - - r ; ) ] ,  
(4 .15f )  

= k~ n13/k2, n43 = ki n23/k2* (4.159) 

5. Calculation of migration velocity 
The method of evaluation of the integrals involved in the equations (2.12),  

(2.13),  (2 .16)  and (2.17)1 for I@), g(P),  fl(P) and f 2 ( / l )  is now discussed. The 
Fourier transform rs, of the Green's function q, appearing in these integrals has 
been derived in $ 4 .  By taking the inverse transform of (4 .2) ,  one obtains the value 
ofqj  as 

- m -  

b = S:mJ-m I?,, exp [ i (k ,  r, + k, r,)] dk, dk,. (5.1) 

From this expression it is seen that 

ik, Ti, exp i (k ,  rl + k, r,)] dk, dk,. ( 5 4  

Substituting from (4 .4) ,  (5 .1)  and (5 .2)  into (2.12) shows that the value of 
h(P) is given, in terms of the Fourier transforms, by 

By the convolution theorem of Fourier transforms, this equation reduces to 

h(P) = 4m2 1' 1 OD lkm- [ik, ril(kl, k2) ri3( - k,, - k,)] dk, dk2 dr,. (5 .4)  
r,=O ks=--m ,--m 

In  a similar way, it can be shown that 
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where 

(5.9) 
where r,, and ri3 are given by (4.6)-(4.15) and 

J, = ik, w k l ,  k2)  ri3( - k,, - k2), J~ = r31(k1, k2)  r,3( - k,, - k2), 
(5.10a) 

(5.106) 

(5.10~) 

and rij, 3. = [ar,/ar,*l r,' = 1' (5.11) 

The triple integrations in (5.4)-(5.11) are performed by reducing them to 
double integrals by first changing to a triple integral over r3, p and q5 where 

k, = psinq5, k, = p cosq5, (5.12) 

and then performing the 4 integration analytically (see Vasseur 1973). The 
double integrals are then solved numerically on an IBM 360 computer, the 
results of these integrations being presented in the following sections. 

J3 = ikl ril. 3 * ( h 7  kZ) r$3( - '1, - k2)> J4 = r31, 3 * ( h  kZ) r13( - kl, - kZ), 

J5 = '? ' , 3 ( h ,  k 2 )  ri3( - kl, - k2), 4 = - ik1 r 3 3 ( k l ,  k2) r13( - k1, - k 2 ) ~  

6. Migration of a spherical particle in a stagnant fluid 
I n  this section, the case of a spherical particle sedimenting in a fluid at rest (or 

undergoing a very slow motion), bounded by two plane walls W at r; = 0 and 
r; = 1, is considered (see figure 3). If Urn is the characteristic velocity of the slow 
fluid motion between the walls, we require (as stated in 92) the condition 

IV/Uml %. 1 (6.1) 

to be met. Making use of (2.8)and(6.4),it may be readily shown that the migration 
velocity v;, normalized with respect to VRe, may be put in the form 

- vi = 24n3J1 1 O0 Srn ik, ril(hl, k,) ri3( - k,, - k,) dk,dk,dr3, (6.2) VRe r,=O k 2 = - w  k,---oo 

where 
The results obtained from evaluating this triple integral in the manner des- 

cribed at the end of $ 5  are presented in figure 3. It is noted that the value of 
w;/VRe is positive for 0 < /3 < 0-5 and negative for 0.5 < /3 < 1.0. This implies 
that the particle migrates away from the walls to an equilibrium position a t  
/3 = 0.5, i.e. at a position mid-way between the two plane walls. 

The case of a spherical particle sedimenting in a stagnant fluid bounded by a 
single plane wall (at r3 = 0) was studied by Cox & Hsu {1975), and it was found 

and ri3 are given by (4.6)-(4.15). 
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FIQURE 3. Lift velocity experienced by sphericd particle sedimenting in a stagnant fluid 
bounded by two plane walls: -, present theory; - - - - - -, asymptotic value given by 
(6.3). 

that the particle migrates away from the wall with a velocity v; given by 

(6.3) 
This result (together with a similar one valid near /I = 1) is plotted in figure 3 and 
it is seen that the results for the single wall and for the two walls become identical 
near the walls (i.e. as /3+ 0 and /3 + 1) and that in the neighbourhood of the walls, 
i.e. for /3 < 0.08 and for fl  > 0.92, the result (6.3) differs little from that predicted 
by the present theory. It has been observed experimentally that a spherical 
particle settling slowly near the wall of a circular tube (Oliver 1962; Karnis et al. 
1966) or near the wall of a rectangular tube (Vasseur 1973) in an otherwise stag- 
nant fluid migrates towards the tube axis as predicted by the present theory. 

vi/VRe = & = 0-09375. 

7. Migration of a spherical particle in a shear flow 
7.1. The $ow jield 

In this section, the migration velocity experienced by a spherical particle, neu- 
trally buoyant or not, suspended in a simple shear flow is considered. The wall at 
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F ~ a m  4. Lift velocity experienced by a non-neutrally buoyant spherical particle in a 
shear flow (sedimentation velocity V in the same direction as flow): -, present theory; 
- - - - - -, asymptotic value given by (7.4). 

ri  = 0 is taken to be at rest with the fluid velocity upwards increasing linearly 
with ri and taking the value Um, the characteristic velocity, at the wall r; = 1 
(see figure 4). Thus in terms of the dimensionless quantities defined by (2.7) the 
undisturbed shear flow is represented by 

m - 3 )  = 9.3. (7.1) 

7.2. A non-neutrally buoyant particle 
The case of a non-neutrally buoyant spherical particle suspended in the sheer 
flow for which 

is now considered. Substituting the value of Ul(ra) given in (7.1) into (5.5) one 
obtains the lift velocity v; (normalized by Re 77') from (2.9) as 

K~ I v/uml < 1 (7.2) 
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where J1 and J z  are defined in (5.10). This integral has been evaluated as described 
in $ 5  and the result is shown in figure 4. From (7.3), it is seen that the migration 
velocity changes sign when the direction of the shear flow is reversed. Thus, as 
shown in figure 4, when the particle sediments in the same direction as the stream 
velocity, migration is towards the stationary plane wall for all positions of the 
particle and, conversely, if the particle is sedimenting in the opposite direction to 
the stream velocity it migrates towards the moving wall. 

The migration velocity experienced by a spherical particle suspended in a 
shear flow and located in the vicinity of a single plane wall (at r3 = 0) was ob- 
tained by Cox & Hsu (1975) as 

vj/ReU,, = -$+p = -0.171875b. (7.4) 

This result (together with one valid near p =  1 obtained by replacing /3 by 
1 -/3) is also plotted in figure 4 and it is seen that these results agree asymptoti- 
cally with the present theory in the limits p-. 0 and /3+ 1. It should be noted that 
the migration of a non-neutrally buoyant particle, as determined here by (2.9), 
is independent of whether the particle is free to rotate or not (see Cox & Brenner 
1968). 

7.3. A neutrally buoyant particle 
Consider the case of a neutrally buoyant or almost neutrally buoyant particle for 
which 

By substituting for Ul(~3) from (7.1) into (5.6)-(5.9), one obtains from (2.10) the 
value of the lift velocity w; (normalized by K2a?YL/v) experienced by a neutrally 
buoyant particle which is free to rotate and is suspended in the shear flow as 

K2 9 I VLl. (7.5) 

1' 1 j w 3  - A  (J3 + &)I+ (4 + Jd)dkdkZdr3Y 4 - 40  3 

K2aUz/v - Tn r,=O k,=--oo k l = = - m  

(7.6) 

while similarly, from (2.1 l), the lift velocity v; experienced by a neutrally buoyant 
particle which is not allowed to rotate is 

(7.7) 

J1, J,, J3 and J4 being defined in (5.10). The results obtained by evaluating the 
integrals in (7.6) and (7.7) in the manner described in $ 5 are presented in figures 
5 and 6 respectively. It is seen that a neutrally buoyant spherical particle sus- 
pended in a plane shear flow migrates away from the walls towards an equilibrium 
position at p = 0.5, i.e. at a position mid-way between the two plane walls. It also 
appears that, in the vicinity of the walls, a particle which is prevented from rotat- 
ing experiences a greater lift velocity than a particle which is free to rotate. 

The case of a neutrally buoyant spherical particle, suspended in a shear flow, in 
the vicinity of a single plane wall (at r3 = 0) was considered by Cox & Hsu (1975). 
They found that, if the particle is allowed to rotate, i t  migrates with a velocity 
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given by 

whereas, if the particle is not allowed to rotate, it then migrates with a velocity 
given by 

These results (together with one valid near ,8 = 1) are also plotted in figures 5 and 
6, and it is seen that they agree asymptotically with the present results in the 
limits of @-to and ,8+ 1 and that in the neighbourhood of the walls, i.e. for 
/3 < 0-04 and @ > 0-96, they differ very little from the present theory. 

KO & Leal (1974) have investigated theoretically the lateral migration of a 
freely rotating neutrally buoyant sphere in either sheer flow or plane Poiseuille 
flow by a method similar to that used here except that, rather than using Fourier 
transforms, they evaluated the volume integrals (2.16) and (2.17) directly after 
having obtained an expression for & as an integral. Their results have been 
plotted in figure 5 and it is seen that, while agreement is not too bad near the 

vf/K2(aU2/v) = & = 0.095486, 

v;/K2(aUi/v) = fi = 0.105903. 

(7.8) 

(7.9) 



400 P. Vasseur and R. G. Cox 

u 
b 0.04 1 
v 

-0.0' - 
-0.04 - 
-0.06 - 
-0.08 - 

-0.10 - 
I 1  

0 0.1 0.2 0.3 0.4 0.5 0.6 0-7 0.8 0.9 1.0 

B 
FIU~RE 6. Lift velocity experienced by a neutrally buoyant spherical particle in 8 

flow (particle is prevented from rotating): -, present theory; - - - - -, asymptotic 
given by (7.9). 

centre = 0.5, it becomes poor near the walls and in fact their results do not 
seem to have there the asymptotic behaviour predicted by Cox & Hsu (1975). This 
may be due to poor convergence of the numerical computation when the sphere 
is close to a wall. 

The migration of neutrally buoyant spherical particles in a Couette flow has 
been investigated experimentally by Halow (1968) and Halow & Wills (1970a, a), 
who found that the radial migration forces cause particles to assume an 
equilibrium position near the mid-point of the Couette system. This migration 
phenomenon was found to be dependent on the ratio of the diameter of the 
particle to the distance between the walls, and also on the Reynolds number 
based on the diameter of the particle. The present theory is qualitatively in 
agreement with these experimental results. 
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FIGTJRE 7. Lift velocity experienced by a non-neutrally buoyant spherical particle in a 
plane Poiseuille flow (sedimentation velocity V in the same direction as flow) : -, present 
theory; - - - - -, asymptotic value given by (8.3). 

8. Migration of a spherical particle in a Poiseuille flow 
8.1. The flow field 

In  this section, the migration veIocity experienced by a spherical particle, neu- 
trally buoyant or not, suspended in a two-dimensional Poiseuille flow between 
walls r; = 0 and rj = 1 is considered (see figure 7). If the maximum flow velocity 
a t  r; = $1 is taken as the characteristic velocity Urn, then the undisturbed Poi- 
seuille flow may be expressed in terms of the dimensionless quantities defined by 
(2.7) as 

giving a maximum velocity U, = 1 a t  the mid-point r, = 0.5 and a zero velocity 
at the walls r3 = 0 and r3 = I .  

26 F L m  78 

VIP,) = 4(T , - f -3 ,  (8.1) 
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8.2.  A non-neutrally buoyant particle ( K ~  < 1 V/Urnl 4 I )  

By substituting the value of Ul(ri) as given by (8.1) into (5.5),  one obtains a 
value for g ( p )  which by making use of (2.9) gives the lift velocity v; (normalized 
by Re Urn) experienced by a non-neutrally buoyant spherical particle suspended 
in a two-dimensional Poiseuille flow as 

J1 and J, being defined by (5.10). This integral, evaluated as described in $5 ,  gives 
the results presented infigure 7. It is seen that, for the case of a particle sediment- 
ing with a velocity V in the same direction as that of the stream velocity Urn, the 
migration is away from the central position /3 = 0.5 to the nearer of the two 
walls. However, if the particle is sedimenting in the direction opposite to that of 
the stream velocity, the reverse occurs and it migrates away from the walls to a 
position /3 = 0.5 mid-way between the two plane walls. 

For the case of a non-neutrally buoyant spherical particle suspended in a 
Poisenille flow in the vicinity of a single plane wall (at r3 = 0 ) ,  it  was found by 
Cox & Hsu (1975) that the migration velocity v; (normalized with Re U;,) experi- 
enced by the particle is given by 

(8.3) 

This result (together with one valid near p = I obtained by replacing p by 
1 - p) is also plotted in figure 7 and agrees asymptotically with the present theory 
in the limits p-+ 0 and p-+ 1, good agreement being obtained with the present 
theory when the particle is located in the neighbourhood of the walls, i.e. for 
p < 0.04 and for /3 > 0.96. 

The behaviour of non-neutrally buoyant spherical particles suspended in 
laminar A ow through a rectangular duct has been investigated experimentally 
by Repetti & Leonard (1964, 1966). By using a duct with cross-section of high 
aspect ratio they achieved an essentially two-dimensional Poiseuille flow, the 
particle migration being examined between the narrowly separated walls when 
it was confined to the mid-plane between the other walls. It was found that a 
spherical particle more dense than the fluid in a downflow travelled towards the 
nearer wall while a spherical particle less dense than the fluid in a downflow 
travelled towards the centre-plane; also, an increase in the migration rate was 
observed for increasing particle size and increasing flow rate, a dependence of this 
migration rate on the density difference between particle and fluid also being 
reported. All these experimental observations are qualitatively in agreement with 
the results of the present theory. 

However, most of the experiments concerning the migration of non-neutrally 
buoyant spherical particles have been performed in tube flow (see, for instance, 
Eichhorn & Small 1964; Jeffrey & Pearson 1965; Denson et al. 1966), where 
an essentially similar migration phenomenon was observed, in that it was found 
that a spherical particle more dense than the fluid in an upflow (or a spherical 

vaRe Urn = - & [22-105,8] p. 
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FIGURE 8. Lift velocity experienced by a neutrally buoyant spherical particle in a plane 
Poiseuille flow (particle freely rotates): -, present theory; - - - - -, asymptotic value 
given by (8.8); - - -, values obtained by Ho & Leal (1974). 

particle less dense in a downflow) migrates towards the tube axis, while a spheri- 
cal particle less dense than the fluid in an upflow (or a spherical particle more 
dense in a downflow) migrates towards the tube wall. 

8.3. A neutrally buoyant particle ( K ~  9 1 V/Uml) 
By substituting the value of U1(r3) from (8.1) into (5.6)-(5.9), one obtains from 
(2.10) the value of the lift velocity v; (normalized by aU;/v) experienced by 
a neutrally buoyant spherical particle which is free to rotate and is suspended in a 
two-dimensional Poiseuille flow as 

+ ( I  -2r3)(J4+Js)}dkldk2dr3, (8.4) 

while similarly, from ( 2 . 1 1 )  one obtains the lift velocity experienced by a 
26-2 
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Poiseuille flow (particle is prevented from rotating) : -, present theory; - - - - -, asympto- 
tic value given by (8.9). 

neutrally buoyant spherical particle which is not allowed to rotate as 

+ (1 - 2r3) (4J4+ J,))dk,dk,dr,, (8.5) 
J3, J4, J5 and J, being defined in (5.10). 

The integrals in (8.4) and (8.6) are presented in figures 8 and 9 respectively. It is 
seen that a neutrally buoyant particle suspended in a plane Poiseuille flow 
migrates away from both the walls and the centre-plane until it  reaches a stable 
equilibrium position. For a particle that is free to rotate, this stable equilibrium 
position is at  /?* = 0.19 (and at p* = 0.81) while it is at/?* = 0-26 (and/?* = 0.74) 
for a particle that is prevented from rotating. For either case,the position P* = 0-5 
is an unstable equilibrium position. The dependence of the position of stableequili- 
brium on particle rotation has been observed experimentally by Oliver (1962) 
for tube flow. He reported that rotating spherical particles reach an equilibrium 
position which is farther from the tube axis than that for non-rotating particles. 
The present theory is qualitatively in agreement with these observakions. 
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For the case of a neutrally buoyant spherical particle suspended in a Poiseuille 
flow in the vicinity of a single plane wall, it  was found by Cox & Hsu (1975) that 
for a particle which is allowed to rotate the lift velocity is given by 

w{/(a/Z)z(aU~/v) = & (1 - 2p)  (22 - 146p), (8.6) 

while for a particle which is not allowed to rotate the lift velocity is given by 

These results are also plotted in figures 8 and 9 (together with results near /3 = 1 
obtained by replacing /3 by 1 - p )  and it is seen that they agree asymptotically 
with the present theory in the limits p+O and p-+ 1 (i.e. when the particle is 
located in the vicinity of the walls). The results obtained by Ho & Leal (1974) for a 
neutrally buoyant sphere free to rotate in a plane Poiseuille flow have also been 
plotted in figure 8 and agreement with the present theory is very good over the 
central portion (0.15 < /3 < 0.85), but, like their results for shear flow (see figure 
5 ) ,  agreement becomes poor when the particle is close to the walls. Furthermore, 
their results do not have the asymptotic behaviour near the walls predicted by 
Cox & Hsu (1975). 

The migration of neutrally buoyant spherical particles flowing through a rec- 
tangular channel has been investigated experimentally by Yanizeski (1 968). The 
channel was of high aspect ratio and the flow was essentially a two-dimensional 
Poiseuille flow. The effect of lateral migration was to move the particles away 
from both the mid-plane and the walls, with a particle taking up a stable position 
between the centre-plane and the walls. The smallest particles achieved equili- 
brium at p* = 0-28 while the largest particles travelled closer to the centre-plane. 
Such a dependence of the equilibrium position, for neutrally buoyant spherical 
particles, on particle size was also reported for tube flow by Karnis et al. ( 1 9 6 6 ~ ) .  
It was found that the largest particles, a/Z near 0.5, travelled with their centres on 
the tube axis while progressively smaller particles travelled further from the 
axis. Since the particles used by Yanizeski were relatively large, it  is not surprising 
that he obtained an equilibrium position p* = 0.28 different from the theoretical 
value p* = 0.19 predicted by the present theory. 

More recently, the migration of neutrally buoyant spherical particles suspended 
in two- and three-dimensional Poiseuille flow has been studied experimentally by 
Tachibana (1 973). The equilibrium positions reported in this investigation 
exhibited a great deal of scatter and, for reasons that are not clear from his paper, 
Tachibana presented sphere trajectories only for two cases with equilibrium 
positions of ,8* = 0.20 and 0.80. These equilibrium values are in good agreement 
with the theoretical values p* = 0.19 and 0.81 predicted by the present theory. 

A large number of experimental investigations on the migration of neutrally 
buoyant spherical particles in tube flow have been conducted (see, for instance, 
Segr6 & Silberberg 1961, 1962; Oliver 1962; Karnis et al. 1966a, b ;  Jeffrey & 
Pearson 1965). A similar migration phenomenon was observed in that the neu- 
trally buoyant particles migrate away from both the tube wall and the tube axis 
t o  an equilibrium position at 0.5 to 0.6 of the tube radius from the axis. 
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9. Migration of a spherical particle in a general flow 
Consider a spherical particle suspended in a fluid contained between the vertical 

walls r3 = 0 and r, = 1, the undisturbed fluid motion being in the vertical direc- 
tion and varying with the r3 co-ordinate. Since the undisturbed dimensionless 
fluid velocity U(r) = (U,, 0, 0) satisfies the Navier-Stokes equations, it  is seen 
that i t  must be of the form 

(9.1) 

where a, b and c are constants. The velocity of the walls at r, = 0 and r3 = 1 would 
then be c and a + b + c respectively. 

Writing Us ( E r,) as the undisturbed shear flow discussed in $ 7  and Up 
(= 4 (r,-r3) as the undisturbed Poiseuille flow discussed in $8, the general 
flow velocity given by (9.1) may be written 

U, = ar! + br, + c,  

U u, = --U,+(a+b)U,+c. 4 

Since U, = c represents a uniform translation of the whole system and so cannot 
affect the particle migration, one may without loss of generality take U, to be a 
linear combination of the shear and Poiseuille flows. Thus we shall write 

where p and q are constants. 
For any particular situation under discussion we let the particle migration 

velocity for the shear flow U, as calculated in 9 7 be (v& and for the Poiseuille flow 
Up as calculated in $ 8 be (v;),. Then, for a particle settling in a quiescent or nearly 
quiescent fluid for which I V/U,l B 1,  the migration velocity v; is independent 
of the flow (as is seen from (2.8) and (2.12)), its value being that determined in 
$6.  However, for a non-neutrally buoyant particle for which KZ < I V/U,/ < 1, 
the migration velocity v; is seen from (2.9) and (2.13) to be linearly dependent 
upon U,, so that upon substitution of U, from (9.3) one obtains 

u, =pUp+9V,, (9.3) 

4 = P ( 4 p  + d 4 w  (9.4) 

where ( w ; ) ~  and (v& refer to the migration velocities for a non-neutrally buoyant 
particle and are derived respectively in 5 8.2 and $7.2. 

I n  a similar manner, for a neutrally buoyant particle for which I V/U,l < K ~ ,  

the migration velocity v; must, from (2.10) and (2.14)-(2.17), be of the form 

where A and B are functions of /3 only. Substitution of the values of Up and V,  
then yields 

When p = 1 and q = 0, the undisturbed flow field is the Poiseuille flow Up so that 
the corresponding migration velocity is (v;), (applicable to a neutrally buoyant 
particle). Thus 

4 = {4 (1 - -2P)P+!WP+Bd.  (9.6) 

( ~ f ) ~  = 4 (1 - 2p) A .  (9.7) 
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Also, when p = 0 and q = 1, the undisturbed flow field is the shear flow V, so that 
the corresponding migration velocity is (v& (applicable to a neutrally buoyant 
particle). Thus 

(v;), = B. (9.8) 

Substitution of (9.7) and (9.8) into (9.6) yields for the migration velocity 

where (vi), and (v& refer to the migration velocities of a neutrally buoyant 
particle and are derived respectively in $8.3 and 57.3. This result (9.9) is valid 
whether or not the particle is free to rotate (so long as v;, (v&, and all refer 
either to a particle free to rotate or to a particle prevented from rotating). 

10. Intermediate cases 
The results obtained in the preceding sections may be summarized as follows: 

(a)  for a spherical particle sedimenting in a quiescent fluid or a very slowly 
moving one ( I  V/U,l + 1) the migration velocity (v& is given by 

( 4 a  (aV2/v)  Pl(Ph (10.1) 

(b)  for a buoyant spherical particle ( K ~  < I V/V,l < 1) the migration velocity 
(v;)~ is given by 

(10.2) 

(c) for a neutrally buoyant spherical particle ( 1  V/U,l << lc2) the migration 
velocity ( v ; ) ~  is given by 

( 4 c  (aU2/.) K2 F,(P), (10.3) 

where the functions F1(P) and P2(/3) are independent of whether the particle is 
free to rotate or not while F,(P) does depend on whether or not the particle is 
allowed to  rotate. Cases intermediate between (a),  ( b )  and (c)  were also discussed 
by Cox & Brenner (1968). These are 

(d) the case intermediate between (a )  and ( b )  of a non-neutrally buoyant 
particle in a very slow flow for which 1 V/U,l N 1. The migration velocity ( ~ j ) ~  is 
then obtained as a linear combination of the results (2.8) and (2.9), namely 

( 4 d  = 67r (aV/v) [ W P )  - %g(P)I ,  (10.4) 

where h(P) and g ( P )  are defined by (2.12) and (2.13) respectively. This result is 
independent of whether the particle is free to rotate or not. 

( e )  the case intermediate between a neutrally buoyant (c) and a non-neutrally 
buoyant (b)  particle for which I V/U,l N ic2. The migration velocity (vi), for such 
a particle when it is free to rotate is obtained as a linear combination of (2.9) and 
@lo),  namely 

(10.5) 
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while, if it  is prevented from rotating, the migration velocity (vf), is obtained as a 
linear combination of (2.9) and (2.1 l), namely 

(10.6) 

wheref($) andp(P) are defmed in (2.14)-(2.17). 
Since case (d )  is merely a composite of (a )  and (b ) ,  while case ( e )  is a composite of 

( b )  and (c), it  follows that case (d) may be obtained by a simple superposition of 
the results obtained in $9 6 and 7.2 for a spherical particle in a shear flow and the 
results obtained in $56 and 8.2 for a spherical particle in aPoiseuilleflow. Similarly, 
case ( e )  may be obtained by superposing the results of $5 7.2 and 7.3 for a spherical 
particle in a shear flow and the results of $5 8.2 and 8.3 for a spherical particle in a 
Poiseuille flow. In  practical problems, one is unlikely to encounter particles which 
are precisely neutrally buoyant. For this reason, case ( e )  is likely to be of great 
interest in applications. 

In  terms of the functions Fl($), F2(P) and F,($) appearing in (10.1)-(10.3), the 
migration velocities (w& and (vi), for the intermediate cases (d )  and ( e )  considered 
in this section may be rewritten as 

and 

(10.7) 

(10.8) 

For the case of a spherical particle suspended in a two-dimensional Poiseuille 
flow, it is found in $56 and 8 that the functions Fl($), F,($) and F3($) have the 
following properties : 

I > 0 for 0 < $ .c 0.5, 
= 0 for $ = 0.5, 

(10.9) 

(10.10) I = 0 for $ =  0, 

= 0 for $ = 0.5, 

> O  for O < $ < p * ,  
0 for $ = $*, 

< 0 for p* < $ < 0.5, i = 0 for p = 0.5, 

where $* is the eccentric equilibrium position for a neutrally buoyant spherical 
particle. 

As mentioned previously, the migration experienced by a spherical particle 
suspended in a two-dimensional Poiseuille flow has been investigated experi- 
mentally by Repetti & Leonard (1964, 1966). It was found that a more dense 
particle in a downflow migrated to the nearest wall while a less dense particle in a 
downflow migrated to the axis. It was found on the other hand that when the 
fluid-particle density differences were very small (of the order of i- 0.05 %), the 

> 0 for 0 < $ < 0.5, 

(10.11) 1 F3W = 
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FIGURE 10. Equilibrium positions for the intermediate case between neutrally and non- 
neutrally buoyant: - - - -, a spherical particle freely rotating; ~ , a spherical particle 
prevented from rotating. 

migration of the particle ceased before it reached its extreme position at the wall 
or at the axis. Although the data of Repetti & Leonard are not sufficient to settle 
the matter unequivocally, it  seems that the final stable equilibrium position will 
depend upon the density difference between the particle and the fluid. 

The migration for the case intermediate between a neutrally and a non- 
neutrally buoyant particle suspended in a two-dimensional Poiseuille flow is 
described in the present theory by (10.8), according to which the stable equili- 
brium position /3* depends upon the dimensionless ratio Ra = (UJ V )  (a/Z)2, 
which may be either positive or negative. Using the results of $9 8.2 and 8.3 for the 
functions F!(/3) and F3(/3), the equilibrium position /3* was calculated from (10.8), 
the results being presented in figure 10. For the case of a neutrally buoyant 
particle (Ra = 0) ,  it is seen that a particle which is allowed to rotate reaches an 
equilibrium position a t  /3* = 0.19 while, if the particle is slightly buoyant, its 
equilibrium position lies nearer to the wall than 0.19 when Ra > 0 and nearer to 
the axis than 0-19 when Ra < 0. When Ra < - 6 the particle behaves as a non- 
buoyant particle and migrates until it  reaches its extreme position a t  the axis, 
i.e. at /3* = 0.5. This case thus corresponds to the case of a particle more dense 
than the fluid in an upflow or to the case of a particle less dense than the fluid in a, 
downflow. It is of interest to note that, when Ra > 0, the equilibrium position of 
the particle moves asymptotically towards the wall as the value of Ra increases. 
This result indicates that, according to this theory, the particle never reaches the 
wall for any value of Ra. This is not in agreement with the experimental observa- 
tions. However, the present theory is not expected to predict correctly the 
behaviour of a particle located in the vicinity of a plane wall since it has been 
assumed that a/d < 1, that is, the particle should be a t  least a few diameters 
away from the wall. The case of a slightly buoyant particle which is preventedfrom 
rotating is also depicted in figure 10 and the same general observations made for 
the case of a particle which is allowed to rotate are applicable. It is also interesting 
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FIGURE 11. Equilibrium positions for the intermediate case where U,/V N 1 .  

to note that the sedimenting velocity V is proportional to the factor a2 (Ap)  g/p, 
where Ap is the density difference between the particle and the fluid, and g is the 
local acceleration due to gravity. It follows that the equilibrium position /3* is 
independent of the particle size and depends only on the parameter pUm/Apgb2. 
Thus particles of different density will accumulate on different streamlines, 
irrespective of particle size. As mentioned earlier, this phenomenon has been 
observed by Repetti & Leonard (1964, 1966) in a two-dimensional Poiseuille 
flow but has never been reported for the case of a particle suspended in a tube 
flow. However, the failure of previous investigators to observe this phenomenon 
in circular tubes is not surprising since, as pointed out by Brenner (1966), the 
range of density difference required to prevent migration of the particle all the 
way to the tube axis is very narrow. 

According to (10.7), (10.9) and (10.10), it  appears that there exist also eccentric 
stable equilibrium positions /3* for the intermediate case (d) of a non-neutrally 
buoyant particle in a very slow Poiseuille flow with I V/Uml N 1. Using the results 
of 5 6 and 5 8.2, this equilibrium position /3* is plotted against the parameter 
Urn/ V in figure 11. It is seen that the value of /3* changes very rapidly from 0.5 
(the central position) to 0.2 as Urn/ V is increased near the value of Urn/ V = 2. This 
indicates that experimentally it would be very difficult to observe such an 
equilibrium position with /3* between 0.2 and 0.5 and in fact this phenomenon 
does not seem to have been observed in any previous experimental investigations. 
However, for values of /3* between 0 and 0.2, it  should not be too difficult to ob- 
serve experimentally this phenomenon since, for this range, the dependence on 
UJV is not so critical. Furthermore, it  should be observed that, according to 
figure 11, the equilibrium position /3* = 0 is never reached, i.e. the particle will 
never migrate completely to the wall. This finding, however, is not expected to be 
valid because, as mentioned previously, the theory is probably incorrect when the 
particle is very close to the wall. The equilibrium position /3* occurs in the range 
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0 < p* < 0.5 only if Urn/ V is positive since for Urn/ V negative migration is always 
to the central position /3* = 0.5 as is indicated by (10.7), (10.9) and (10.10). 
Thus the equilibrium position &th 0 < /3* < 0.5 will be observed only for the 
case of a particle less dense than the fluid in an upflow or for a particle more dense 
than the fluid in a downflow. 

Thus a spherical particle suspended in a plane Poiseuille flow experiences an 
equilibrium position /3* which is in general a function of the ratio of the sediment- 
ing velocity to the stream velocity V/Um and of the particle to duct size ratio 
all. Using the results of figures 10 and 11, the values of the final equilibrium 
position /3* have been plotted on the all, V/Um plane in figure 12 (a)  for the case 
of a particle which is allowed to rotate and in figure 12 (a) for a particle prevented 
from rotating. It is seen that, for large positive values of V/Um, the equilibrium 
position /3* of the particle is independent of the non-dimensional particle size 
all (at least to the order of approximation used in the theory) while, for smaller 
values of V/Urn, the equilibrium position depends upon all (except for V/U, = 0, 
i.e. for the case of a neutrally buoyant particle). 

11. Summary and conclusions 
The lateral migration of a spherical particle suspended in a simple Couette 

flow and in a two-dimensional Poiseuille flow has been studied theoretically. The 
velocity vj of such a lateral migration has been found (under certain restrictions) in 
terms of the Reynolds number Re  = aUrn/v based on the undisturbed flow, the 
dimensionless particle size all, the ratio of the sedimentation velocity of the 
particle to the stream velocity V/Um and the position of the particle in relation to 
the walls /3 = d/ l .  Furthermore, the following additional results were obtained: 
first, a non-neutrally buoyant particle suspended in a plane Poiseuille flow 
migrates towards the nearest wall if Urn/ V > 0 and migrates away from the walls 
until it  reaches an equilibrium position at a distance mid-way between the two 
walls if Um/V < 0. Similarly, a particle suspended in a Couette flow (with one wall 
stationary) migrates towards the moving wall when Um/V < 0 and towards the 
stationary wall when Um/V > 0. On the other hand, a particle sedimenting in a 
stagnant fluid bounded by two vertical plane walls migrates until it  reaches an 
equilibrium position at a distance mid-way between the two walls. These results 
are independent of whether the particle is free to rotate or not. 

Second, a neutrally buoyant particle suspended in a plane Poiseuille flow 
migrates away from both the walls and the mid-plane until it  reaches an eccentric 
equilibrium position p*. For a particle which is free to rotate, this equilibrium 
position is a t  p* = 0.19 (and /3* = 0.81) while, for a particle which is prevented 
fromrotating, it is a tp*  = 0.26 (andp* = 0.74). Similarly, aparticle suspendedin 
a Couetts flow is repelled by the walls and reaches an equilibrium position mid- 
way between the two plane walls. 

Third, an almost neutrally buoyant particle suspended in a plane Poiseuille 
flow may experience equilibrium positions /3* at any distance between the walls 
and the centre-plane. Such equilibrium positions depend essentially on the 
density difference between the particle and the fluid and on whether the particle 
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is allowed to rotate or not. Furthermore, the present theory predicts that there 
also exist eccentric equilibrium positions for the intermediate case of a non- 
neutrally buoyant particle in a slowly moving fluid. These equilibrium positions 
are independent of whether the particle is allowed to rotate or not and depend 
very critically on the ratio Urn/ V and occur only if this ratio is larger than but not 
too much larger than + 2. 

This work was supported by the National Research Council under Grant no. 
A-7007. 
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